南投縣 105學年度第一學期信義鄉豐丘國民小學五年級數學領域教學計畫表
一、 課程架構圖:
二、
課程理念:
數學課程發展以生活為中心,配合各階段學生的身心與思考型態的發展歷程,提供適合學生能力與興趣的學習方式。學習活動讓所有學生都能積極參與討論,激盪各種想法,激發創造力,明確表達想法,強化合理判斷的思維與理性溝通的能力,期在社會互動的過程中建立數學知識。
三、 先備經驗或知識簡述:
以現實生活的題材為中心,讓學生從現實生活中掌握數、量、形的概念與關係;從現實生活中和同學或家庭成員理性溝通數學;從現實生活中,擬定數學問題,並培養其批判、分析和解決問題的能力;進而培養學生欣賞數學的能力。
四、 課程目標:
1.掌握數、量、形的概念與關係。
2.培養日常所需的數學素養。
3.發展形成數學問題與解決數學問題的能力。
4.發展以數學作為明確表達、理性溝通工具的能力。
5.培養數學的批判分析能力。
6.培養欣賞數學的能力。
五、 教學策略建議:
編輯教材時,適時納入各類評量問題與活動,希望能幫助教師在各種脈絡中適時了解學生的學習狀況。同時在評量問題中,也適時納入學生與學生間及學生與教師間溝通的機制,讓學生在日常生活中培養與人溝通、分析與批判的能力。甚至納入學生與家庭成員共同學習的機制,一方面讓學生家長了解學生的學習狀況,另一方面也讓學生家長了解數學教育的走向。
六、 參考資料:
1.http://www.Mtedu.tmtc.edu.tw/教材資源/教案設計/解題取向與引導取向.doc
2.http://www.Mtedu.tmtc.edu.tw/reference-subtopic.asp?t=數學教育名詞釋疑&subt=教學
3.Mayer,
R.E. (1978). Educational Psychology: A cognative approach.
4.林珮如(1992):國小數學因數解題與迷思概念之研究。國立屏東師範學院數理教育研究所碩士論文。
5.臺灣省國民學校教師研習會(1998):國民小學數學科心課程概說(高年級)。臺灣省國民學校教師研習會。
6.國立教育研究院籌備處(2002):國小數學教材分析-整數的數量關係。國立教育研究院籌備處。
7.陳清義(1996):國小五年級學生因數、倍數問題學習瓶頸之研究。臺北市立師範學院(臺灣)初等教育研究所碩士論文。
8.Close,
G.S.(1982)Children’s Understanding of
Angles at the Primary/Secondary Transfer Stage. Lond South Bank Polytechnic。
9.Dickson,
L., Brown, M., and Gibson, O. (1984) Children’s Learning Mathematics: A Teacher’s Guide( Recent Research.
10.Shuard,
H.(1986) Primary Mathematics Today and Tomorrow. Londow: Longman。
七、 課程計畫:
學習總目標:
1.解決生活情境中,三、四位數乘以三位數的問題;能解決生活情境中,四位數除以二位數的問題;能應用乘除互逆,驗算除法的答數;能解決生活情境中,三、四位數除以三位數的問題;能解決末幾位都為0的大數的乘、除法問題。
2.了解整除的意義;了解因數的意義及找法;了解公因數的意義及找法;了解倍數的意義及找法;能判別2、3、5、10的倍數;了解公倍數的意義及找法。
3.理解三角形任意兩邊和大於第三邊;理解三角形的三內角和為180度;認識多邊形(含正多邊形);認識扇形及圓心角。
4.能解決二步驟的問題,並能用併式記錄與計算;能解決三步驟的問題,並能用併式記錄與計算;能熟練運用四則運算的性質,做整數四則混合計算;能理解乘法對加法的分配律,並運用於簡化計算;能在具體情境中,理解先乘再除與先除再乘的結果相同,以及理解連除兩數與除以此兩數之積的結果相同。
5.理解擴分的意義、方法及其應用;理解約分的意義、方法及其應用;認識通分的意義,並利用通分比較簡單異分母分數的大小;能利用通分,做簡單異分母分數的加減。
6.理解平行四邊形面積的求法,進而形成計算公式;理解三角形面積的求法,進而形成計算公式;理解梯形面積的算法,進而形成計算公式;能計算複合圖形的面積。
7.理解帶分數乘以整數的意義及計算方式,並解決生活中的相關問題;理解整數乘以分數的意義及計算方式,並解決生活中的相關問題;理解真分數乘以真分數的意義及計算方式,並解決生活中的相關問題;理解假(帶)分數乘以假(帶)分數的意義及計算方式,並解決生活中的相關問題;了解分數乘法中,被乘數、乘數和積的變化關係;能解決兩步驟的分數乘法問題。
8.能解決時間的乘法計算問題(分與秒、時與分、日與時);能解決時間的除法計算問題(分與秒、時與分、日與時);能作時間的應用。
9.能理解除數為整數的分數除法意義及計算方法,並解決生活中的問題。
10.認識角柱、角錐、圓柱和圓錐,及其構成要素;認識柱體(直角柱、直圓柱)和錐體(正角錐、直圓錐)的透視圖;認識柱體(直角柱、直圓柱)和錐體(正角錐、直圓錐)的展開圖;認識球及其構成要素。
起訖週次 |
起訖日期 |
主 題 |
單元名稱 |
對應能力指標 |
教學目標 |
教學活動重點 |
教學節數 |
教學資源 |
評量方式 |
重大議題 |
十大基本能力 |
一 |
8/28 - 9/3 |
數與量 |
一、乘法和除法 |
5-n-01能熟練整數乘、除的直式計算。 連結: C-R-1,C-T-3,C-T-4,C-C-3,C-C-5 |
1.能解決生活情境中,三、四位數乘以三位數的問題。 2.能解決生活情境中,四位數除以二位數的問題。 3.能應用乘除互逆,驗算除法的答數。 |
【活動一】三、四位數乘以三位數 1.教師口述情境布題,複習乘法直式的記錄方式和過程,學生透過觀察和討論,察覺並解決三、四位數乘以三位數的問題。 2.教師重新口述情境布題,透過觀察和討論,以乘法直式記錄解決生活情境中的問題。 【活動二】四位數除以二位數 1.教師口述情境布題,配合定位板說明和複習除法直式的記錄方式和過程,學生透過觀察和討論,察覺並解決四位數除以二位數的問題。 2.教師重新口述情境布題,並複習驗算方法,學生透過觀察和討論,解決四位數除以二位數的驗算問題。 |
4 |
1.小白板 2.白板筆 |
1.紙筆測驗 2.口頭回答 3.作業習寫 |
【性別平等教育】 【生涯發展教育】 【人權教育】 |
四、表達、溝通與分享 九、主動探索與研究 十、獨立思考與解決問題 |
二 |
9/4 - 9/10 |
數與量 |
一、乘法和除法 |
5-n-01能熟練整數乘、除的直式計算。 連結: C-R-1,C-T-3,C-T-4,C-C-3,C-C-5 |
1.能解決生活情境中,三、四位數除以三位數的問題。 2.能解決末幾位都為0的大數的乘、除法問題。 |
【活動三】三、四位數除以三位數 1.教師口述情境布題,配合定位板說明和解決三位數除以三位數的問題。 2.教師口述情境布題,配合定位板說明和解決四位數除以三位數(商為一位數)的問題。 3.教師口述情境布題,配合定位板說明和解決四位數除以三位數(商為二位數)的問題。 【活動四】末幾位為0的整數乘法 1.教師口述情境布題,學生透過觀察和討論,察覺並解決末幾位為0的整數乘法問題。 【活動五】末幾位為0的整數除法 1.教師口述情境布題,學生透過觀察和討論,察覺並解決末幾位為0的整數除法問題。 2.教師重新布題,學生透過布題進行驗算,了解當末位為0的除法計算要注意餘數0的個數。 |
4 |
1.小白板 2.白板筆 |
1.紙筆測驗 2.口頭回答 3.作業習寫 |
【性別平等教育】 【生涯發展教育】 |
四、表達、溝通與分享 九、主動探索與研究 十、獨立思考與解決問題 |
三 |
9/11 - 9/17 |
數與量 |
二、因數與倍數 |
5-n-04 能理解因數、倍數。 5-n-05 能認識兩數的公因數、公倍數、最大公因數與最小公倍數。 連結: C-S-2,C-S-5,C-C-1,C-C-4,C-C-5 |
1.了解整除的意義。 2.了解因數的意義及找法。 3.了解公因數的意義及找法。 |
【活動一】整除 1.教師以排列玩具兵布題,用是否可以被除盡判別是否整除。 2.教師宣告:算式中,被除數、除數、商都是整數,餘數是0,就叫作整除。 【活動二】因數 1.教師以小朋友分組布題,學生進行解題,並在整除的要件下,認識因數。 2.教師宣告:像這樣12可以被1、2、、3、4、6、12整除,我們就說說1、2、3、4、6、12都是12的因數。 3.教師透過小白積木的排列,讓學生從矩陣排列的情境圖中,經驗乘法交換律,並從乘法算式中找出因數。 4.教師把10的因數由小到大排列出來,引導學生從中觀察因數的規律。 5.從16的因數中,讓學生發現整數的因數中,最小的是1,最大的是它自己,並了解找到一個因數時同時也找到另一個因數。 6.教師以分鉛筆布題,解決因數的應用問題。 【活動三】公因數 1.學生透過排積木操作,找出可以剛好排成12(或18)公分長的紙條的整公分積木,並察覺這些積木的長度即是12(或18)的因數。 2.教師宣告:1、2、3、6同時是12和18的因數,我們說1、2、3、6是12和18的公因數。公因數中最大的數稱為最大公因數,例如:6是12和18的最大公因數。 3.教師以純數字布題,找出兩數的所有公因數及最大公因數。 4.教師以課本情境布題,解決公因數的應用問題。 |
4 |
1.附件2、3 2.小白板 3.白板筆 |
1.紙筆測驗 2.互相討論 3.口頭回答 |
【性別平等教育】 【生涯發展教育】 |
一、了解自我與發展潛能 四、表達、溝通與分享 九、主動探索與研究 十、獨立思考與解決問題 |
四 |
9/18 - 9/24 |
數與量 |
二、因數與倍數 |
5-n-04 能理解因數、倍數。 5-n-05 能認識兩數的公因數、公倍數、最大公因數與最小公倍數。 連結: C-S-2,C-S-5,C-C-1,C-C-4,C-C-5 |
1.了解倍數的意義及找法。 2.能判別2、3、5、10的倍數。 3.了解公倍數的意義及找法。 |
【活動四】倍數 1.教師以課本情境布題,透過幾的幾倍的乘積,認識「倍數」的意義,並知道一個數的倍數有無限多個。 2.教師以百數表布題,找出8的倍數,並引導學生發現:是某整數的因數,也是某整數的倍數的數,就是某整數自己。 3.教師以課本情境布題,解決倍數的應用問題。 4.教師引導學生察覺乘式中三個數字的因數、倍數關係。 5.教師宣告:當甲、乙、丙都是整數,且甲×乙=丙時,甲和乙都是丙的因數,丙是甲和乙的倍數。 【活動五】判別2、3、5、10的倍數 1.學生透過觀察表中的數字,發現2的倍數的個位數字都是「2、4、6、8或0」;5的倍數的個位數字都是「5或0」;10的倍數的個位數字都是0;3的倍數的每一位數的數字和,都能被3整除。 【活動六】公倍數 1.學生透過附件操作,找出可以用4和6公分長的鐵軌附件,排出一樣的長度,並察覺這些鐵軌的長度即是4和6的公倍數。 2.教師宣告:12、24、36⋯⋯同時是4和6的倍數,我們說12、24、36⋯⋯都是4和6的公倍數。公倍數中最小的數稱為最小公倍數,例如:12是4和6的最小公倍數。 3.教師以純數字布題,找出兩數的公倍數。 4.學生從解題中察覺:如果丙數是甲、乙兩數的公倍數,那麼丙數的倍數也會是甲、乙兩數的公倍數。 【數學步道Ⅰ】撲克牌大戰 1.教師以玩撲克牌情境引入,讓學生作因數與倍數的應用。 2.教師可先引導學生討論如何利用因數概念出牌。 3.學生分組進行活動。 4.教師說明新的遊戲規則,引導學生討論如何利用倍數概念出牌。 5.學生分組進行活動。 |
4 |
1.附件4 2.小白板 3.白板筆 |
1.紙筆測驗 2.互相討論 3.口頭回答 |
【生涯發展教育】 |
一、了解自我與發展潛能 四、表達、溝通與分享 五、尊重、關懷與團隊合作 九、主動探索與研究 |
五 |
9/25 - 10/1 |
幾何 |
三、多邊形與扇形 |
5-s-01 能透過操作,理解三角形三內角和為180度。 5-s-02 能透過操作,理解三角形任意兩邊和大於第三邊。 5-s-03 能認識圓心角,並認識扇形。 連結: C-R-1,C-S-3,C-S-4,C-C-1,C-C-5,C-C-8 |
1.理解三角形任意兩邊和大於第三邊。 2.理解三角形的三內角和為180度。 |
【活動一】三角形的邊長關係 1.教師口述布題,學生拿出附件操作,並把操作的結果記錄在習作上。 2.學生透過操作後的結果記錄,發表說明自己觀察後的發現,並歸納,三角形中任意兩邊邊長的和大於第三邊。 3.教師宣告:三角形中,任意兩邊長的和大於第三邊。 4.學生運用三角型任意兩邊長的何大於第三邊之概念來解題。 【活動二】三角形的內角和 1.教師指導學生測量兩種三角板上的三個角分別為幾度,並計算三個角的和分別是幾度,學生透過操作知道三角板的3個角和為180度。 2.教師指導學生剪一個任意三角形,並在3個角上用色筆做上角的記號,學生互相觀察操作的結果,並發現任意三角形的3個角皆可拼成一個平角。 3.教師以課本情境布題,學生運用三角形內角和180度求算未知角度。 |
4 |
1.附件5 2.紙張 3.剪刀 4.色筆 5.量角器 6.小白板 7.白板筆 |
1.紙筆測驗 2.互相討論 3.口頭回答 4.實際測量 |
【性別平等教育】 【生涯發展教育】 |
一、了解自我與發展潛能 四、表達、溝通與分享 五、尊重、關懷與團隊合作 九、主動探索與研究 |
六 |
10/2 - 10/8 |
幾何 |
三、多邊形與扇形 |
5-s-01 能透過操作,理解三角形三內角和為180度。 5-s-02 能透過操作,理解三角形任意兩邊和大於第三邊。 5-s-03 能認識圓心角,並認識扇形。 連結: C-R-1,C-S-3,C-S-4,C-C-1,C-C-5,C-C-8 |
1.認識多邊形(含正多邊形)。 2.認識扇形及圓心角。 |
【活動三】多邊形 1.教師以課本情境布題,學生觀察圖形的邊數、角數與頂點數,並回答。 2.教師說明多邊形的定義。 3.學生透過測量邊長與角度,發表自己觀察圖形後的發現。 3.教師宣告:一個多邊形如果每條邊都一樣長,每個角都一樣大,就叫作正多邊形。 4.教師以課本情境重新布題,讓學生從測量中發現,每條邊都一樣長的多邊形,每個角不一定都一樣大;每個角都一樣大的多邊形,它的邊長也不一定都一樣長 【活動四】認識扇形及圓心角 1.教師口述布題,學生拿出摺扇進行活動。 2.學生發表扇形和圓形的關係:扇形的頂點是圓心、扇形的直線邊是圓的半徑。 3.教師口述布題並宣告:兩條半徑和一段圓弧所圍成的圖形,叫作扇形。圓心是這個扇形的頂點。扇形的兩條直線邊所夾的角,叫作圓心角。 4.學生判斷辨認哪些圖形的鋪色部分是扇形,並說明理由。 5.教師指導學生利用摺紙或圓規做出指定的扇形,並計算圓心角的角度。 |
4 |
1.附件6、7 2.剪刀 3.筆 4.尺 5.量角器 6.圓規 7.小白板 8.白板筆 |
1.紙筆測驗 2.互相討論 3.口頭回答 4.作業習寫 5.實際操作 |
【性別平等教育】 【生涯發展教育】 |
一、了解自我與發展潛能 四、表達、溝通與分享 五、尊重、關懷與團隊合作 九、主動探索與研究 |
七 |
10/9 - 10/15 |
數與量、代數 |
四、整數四則混合計算 |
5-n-02 能在具體情境中,解決三步驟問題,並能併式計算。 5-n-03 能熟練整數四則混合計算。 5-a-01 能在具體情境中,理解乘法對加法的分配律,並運用於簡化計算。 5-a-02 能在具體情境中,理解先乘再除與先除再乘的結果相同,也理解連除兩數相當於除以此兩數之積。 5-a-03 能熟練運用四則運算的性質,做整數四則混合計算。 連結: C-R-1,C-R-2,C-R-3,C-R-4,C-S-1,C-S-2,C-S-3,C-S-5,C-C-1,C-C-2,C-C-5,C-C-7,C-C-8,C-E-1 |
1.能解決二步驟的問題,並能用併式記錄與計算。 2.能解決三步驟的問題,並能用併式記錄與計算。 3.能熟練運用四則運算的性質,做整數四則混合計算。 4.能在具體情境中,理解先乘再除與先除再乘的結果相同,以及理解連除兩數與除以此兩數之積的結果相同。 |
【活動一】兩步驟的併式計算 1.教師布題,透過情境列式後,引導學生討論500-125-75=300和500-(125+75)= 2.教師重新布題,透過情境列式後,教師引導學生觀察、討論48÷4÷6和48÷(4×6)這兩種解題方式的合理性。並宣告:在連除的算式中,連除兩數和除以這兩數相乘的積,所得到的結果相同。 3.教師重新布題,透過情境列式後,引導學生發現:在乘除混合的算式中,先乘再除與先除再乘的結果相同。 4.教師提醒學生,在乘除混合的算式中,要先算括號的部分,如果沒有括號,就由左而右一步一步算。 【活動二】三步驟的併式計算 1.教師以課本情境布題,引導學生討論整數四則混合計算時,可以使用逐次減項求解,也可以使用各種不同的策略解題。 【活動三】加法性質 1.教師以課本情境布題,並說明:兩數相加時,兩數交換,如35+40和40+35的結果一樣,可以記成:35+40=40+35。 2.教師重新步題,學生共同討論課本呈現不同算法的異同與合理性,察覺加法具有結合律的事實。 3.教師宣告:三個數相加時,任兩數先相加,結果都一樣,例如(638+279)+521 和638+(279+521),可以記成(638+279)+521=638+(279+521) 4.教師以課本下方做做看布題,學生進行解題,並察覺減法沒有結合律的事實。 |
4 |
1.小白板 2.白板筆 |
1.紙筆測驗 2.互相討論 3.作業習寫 |
【性別平等教育】 【生涯發展教育】 【家政教育】 |
一、了解自我與發展潛能 四、表達、溝通與分享 九、主動探索與研究 十、獨立思考與解決問題 |
八 |
10/16 - 10/22 |
數與量、代數 |
四、整數四則混合計算 |
5-n-02 能在具體情境中,解決三步驟問題,並能併式計算。 5-n-03 能熟練整數四則混合計算。 5-a-01 能在具體情境中,理解乘法對加法的分配律,並運用於簡化計算。 5-a-02 能在具體情境中,理解先乘再除與先除再乘的結果相同,也理解連除兩數相當於除以此兩數之積。 5-a-03 能熟練運用四則運算的性質,做整數四則混合計算。 連結: C-R-1,C-R-2,C-R-3,C-R-4,C-S-1,C-S-2,C-S-3,C-S-5,C-C-1,C-C-2,C-C-5,C-C-7,C-C-8,C-E-15-n-01 |
1.能熟練運用四則運算的性質,做整數四則混合計算。 2.能理解乘法對加法的分配律,並運用於簡化計算。 |
【活動四】乘法性質 1.教師以課本情境布題,並說明:兩數相乘時,兩數交換,如4×8和8×4的結果一樣,可以記成:4×8=8×4。 2.教師重新步題,學生共同討論課本呈現不同算法的異同與合理性,察覺乘法具有結合律的事實。 3.教師宣告:三個數連乘時,任兩數先相乘,結果都一樣,例如(15×25)×4 和15×(25×4),我們可以記成(15×25)×4=15×(25×4) 4.教師以課本下方做做看布題,學生進行解題,並察覺除法沒有結合律的事實。 【活動五】分配律 1.教師以課本情境布題,師生共同討論兩種算法的異同與合理性,察覺加乘運算的分配律。 2.教師重新布題,師生共同討論兩種算法的異同與合理性,察覺減乘運算的分配律。 1.教師以課本情境布題,引導學生利用加法交換律及結合律的性質解決連加法的簡化計算問題。 2.教師以課本情境布題,引導學生討論、觀察解決連加或連減的簡化計算問題。 3.教師重新布題,學生利用分配律簡化整數的四則運算。 4..教師重新布題,學生解決連除與乘除混合的簡化計算問題。 |
4 |
1.小白板 2.白板筆 |
1.紙筆測驗 2.互相討論 3.作業習寫 |
【性別平等教育】 【生涯發展教育】 【家政教育】 |
一、了解自我與發展潛能 四、表達、溝通與分享 五、尊重、關懷與團隊合作 九、主動探索與研究 |
九 |
10/23 - 10/29 |
數與量 |
五、異分母分數的加減 |
5-n-06 能用約分、擴分處理等值分數的換算。 5-n-07 能用通分做簡單異分母分數的比較與加減。 連結: C-R-1,C-R-2,C-R-3,C-S-4,C-S-5,C-C-2,C-C-5,C-C-7,C-C-8 |
1.理解擴分的意義、方法及其應用。 2.理解約分的意義、方法及其應用。 3.認識通分的意義,並利用通分比較簡單異分母分數的大小。 |
【活動一】擴分和約分 1.教師以課本情境布題,並指導學生透過圖示理解擴分的意義。 2.教師宣告:像上面這樣,把一個分數的分子和分母同乘以一個比1大的整數,會得到一個和原來分數相等的分數,這種方法叫作擴分。 3.教師以課本情境布題,學生拿出附件的長條紙操作,進行約分的教學。 4.教師宣告:像這樣把分數的分子和分母同除以一個比1大的整數,得到一個和原來分數相等的分數,這種方法叫作約分。 5.教師重新布題,師生共同討論怎麼找出可以同時整除分子和分母的數,教師歸納:這些能把分子和分母同時整除的數,都是分子和分母的公因數。 【活動二】通分 1.教師以課本情境布題,學生進行解題,透過重新切割的活動,認識通分的意義。 2.教師重新布題,學生知道通分的意義,進而能比較兩異分母分數的大小。 |
4 |
1.附件8 2.小白板 3.白板筆 |
1.紙筆測驗 2.口頭回答 3.互相討論 4.作業習寫 |
【性別平等教育】 【生涯發展教育】 【人權教育】 |
一、瞭解自我與發展潛能 四、表達、溝通與分享 九、主動探索與研究 十、獨立思考與解決問題 |
十 |
10/30 - 11/5 |
數與量 |
五、異分母分數的加減 |
5-n-06 能用約分、擴分處理等值分數的換算。 5-n-07 能用通分做簡單異分母分數的比較與加減。 連結:C-R-1,C-R-2,C-R-3,C-S-4,C-S-5,C-C-2,C-C-5,C-C-7,C-C-8 |
1.能利用通分,做簡單異分母分數的加減。 |
【活動三】異分母分數的加法 1.教師口述課本情境布題,透過觀察和討論,利用通分方式,察覺並處理異分母分數(分母互為倍數關係)的加法問題。 2.教師重新口述課本情境布題,透過觀察和討論,利用通分方式,察覺並處理異分母分數的加法解題方式。 【活動四】異分母分數的減法 1.教師口述課本情境布題,透過觀察和討論,利用通分方式,察覺並處理異分母分數的減法問題。 2.教師口述課本情境布題,透過觀察和討論,利用通分方式,察覺並處理被減數不夠減,需要借位的異分母分數的減法問題。 【活動五】分數的應用 1.教師口述布題,學生利用整數相除用分數表示後,再進行通分,比較分數的大小。 2.教師以課本情境布題,學利用通分,找出能和1/12加起來和為1的兩個分數。 |
4 |
1.小白板 2.白板筆 |
1.紙筆測驗 2.口頭回答 3.互相討論 4.作業習寫 |
【性別平等教育】 【生涯發展教育】 |
一、了解自我與發展潛能 四、表達、溝通與分享 九、主動探索與研究 十、獨立思考與解決問題 |
十一 |
11/6 - 11/12 |
數與量、幾何 |
六、面積 |
5-n-18 能運用切割重組,理解三角形、平行四邊形與梯形的面積公式。 5-s-05 能運用切割重組,理解三角形、平行四邊形與梯形的面積公式。 連結: C-R-3,C-R-4,C-T-2,C-S-3,C-S-4,C-C-1,C-C-5,C-E-1 |
1.理解平行四邊形面積的求法,進而形成計算公式。 2.理解三角形面積的求法,進而形成計算公式。 |
【活動一】平行四邊形的面積 1.教師口述布題,透過觀察、討論和操作,察覺平行四邊形的底邊和高與長方形的長邊與寬邊的對應,進而形成平行四邊形面積的計算公式。 2.教師宣告:平行四邊形面積=底×高。 3.教師口述布題,畫出平行四邊形指定底邊的高,學生操作解題,教師可複習舊經驗(畫垂直線段的方法),進行解題活動。 3.教師口述布題,透過觀察和討論,察覺並說明等底等高的平行四邊形,周長與面積的關係。 4.教師重新布題,透過觀察和討論,察覺並說明等底不等高的平行四邊形,周長與面積的關係。 【活動二】三角形的面積 1.教師口述布題,透過觀察、討論和操作三角形拼成平行四邊形的活動,察覺和說明三角形的底邊和高,進而形成計算三角形面積的公式。 2.教師以課本布題,學生運用三角形面積公式求算三角形面積。 3.教師口述布題,透過討論和觀察,察覺並畫出三角形指定底邊上的高。 4.教師口述布題,透過觀察、討論和操作,察覺等底等高的三角形,面積都相等。 5.教師口述布題,透過觀察和討論等高的三角形,察覺底邊長與面積大小之間的關係。 6.教師口述布題,透過觀察和討論等底邊長的三角形,察覺高與面積大小之間的關係。 |
4 |
1.附件9∼13 2.直尺 3.剪刀 4.三角板 |
1.紙筆測驗 2.互相討論 3.口頭回答 4.實測操作 |
【性別平等教育】 【生涯發展教育】 |
四、表達、溝通與分享 五、尊重、關懷與團隊合作 十、獨立思考與解決問題 |
十二 |
11/13 - 11/19 |
數與量、幾何 |
六、面積 |
5-n-18 能運用切割重組,理解三角形、平行四邊形與梯形的面積公式。 5-s-05 能運用切割重組,理解三角形、平行四邊形與梯形的面積公式。 連結: C-R-3,C-R-4,C-T-2,C-S-3,C-S-4,C-C-1,C-C-5,C-E-1 |
1.理解梯形面積的算法,進而形成計算公式。 2.能計算複合圖形的面積。 |
【活動三】梯形的面積 1.教師口述布題,透過觀察、討論和操作梯形拼成平行四邊形的活動,察覺和說明梯形的底邊(上底和下底)和高,進而形成計算梯形面積的公式。 2.教師重新口述布題,透過討論和觀察,察覺並解決梯形的面積的問題。 【活動四】複合圖形的面積 1.教師口述布題,透過討論和觀察,察覺並解決複合圖形的面積的問題。 2.教師配重新口述布題,透過討論和觀察,察覺並解決複合圖形的面積的問題。 【數學步道Ⅱ】面積 1.教師口述情境布題,透過觀察、討論和操作,察覺和梯形面積的邊長變化與三角形面積的關係,並進行面積的解題活動。 2.教師口述情境布題,透過觀察、討論和操作,察覺和梯形面積的邊長變化與平行四邊形面積的關係,並進行面積的解題活動。 |
4 |
1.附件14 2.小白板 3.白板筆 |
1.紙筆測驗 2.互相討論 3.口頭回答 4.作業習寫 |
【性別平等教育】 【生涯發展教育】 |
四、表達、溝通與分享 五、尊重、關懷與團隊合作 十、獨立思考與解決問題 |
十三 |
11/20 - 11/26 |
數與量、代數 |
七、分數的乘法 |
5-n-08 能理解分數乘法的意義,並熟練其計算,解決生活中的問題。 5-a-01 能在具體情境中,理解乘法對加法的分配律,並運用於簡化計算。 連結: C-R-1,C-R-2,C-R-3,C-S-4,C-S-5,C-C-2,C-C-3,C-C-5,C-C-7,C-C-8 |
1.理解帶分數乘以整數的意義及計算方式,並解決生活中的相關問題。 2.理解整數乘以分數的意義及計算方式,並解決生活中的相關問題。 |
【活動一】帶分數×整數 1.教師先複習舊經驗,真(假)分數的整數倍問題,並說明其意義。 2.教師口述情境布題,透過觀察和討論,察覺和解決帶分數×整數的問題。 【活動二】整數×分數 1.教師口述情境布題,透過觀察和討論,察覺和解決整數乘以真分數的問題,整數可看成是分母為1的分數來進行分數×分數的計算。 2.教師重新口述情境布題,透過觀察和討論,察覺和解決整數乘以帶分數的問題;教師提示說明可將帶分數化成假分數再相乘做計算,或使用之前學習過的帶分數變成整數和分數以分配律進行解題的活動。 |
4 |
1.小白板 2.白板筆 |
1.口頭回答 2.紙筆測驗 3.作業習寫 |
【性別平等教育】 【生涯發展教育】 |
一、了解自我與發展潛能 四、表達、溝通與分享 九、主動探索與研究 |
十四 |
11/27 - 12/3 |
數與量、代數 |
七、分數的乘法 |
5-n-08 能理解分數乘法的意義,並熟練其計算,解決生活中的問題。 5-a-01 能在具體情境中,理解乘法對加法的分配律,並運用於簡化計算。 連結: C-R-1,C-R-2,C-R-3,C-S-4,C-S-5,C-C-2,C-C-3,C-C-5,C-C-7,C-C-8 |
1.理解真分數乘以真分數的意義及計算方式,並解決生活中的相關問題。 2.理解假(帶)分數乘以假(帶)分數的意義及計算方式,並解決生活中的相關問題。 |
【活動三】真分數×真分數 1.教師口述情境布題,透過觀察和討論,經驗單位分數乘以單位分數的問題。 2.教師口述情境布題和圖示,透過觀察和討論,察覺真分數乘以真分數時,分母相乘,分子和分子相乘即可。 3.教師口述情境布題,透過觀察和討論,察覺和解決真分數乘以真分數的問題,可以先進行約分再計算。 4.教師口述情境布題,透過觀察和討論,察覺和解決真分數乘以真分數的擬題問題。 【活動四】分數×分數 1.教師口述情境布題,透過觀察和討論,察覺和解決假分數乘以真分數的問題。 2.教師口述情境布題,透過觀察和討論,察覺和解決假分數乘以假分數的問題。 3.教師重新口述情境布題,透過觀察和討論,察覺和解決帶分數乘以帶分數的問題;教師提示說明可將帶分數化成假分數再相乘做計算,或者是利用分配律再做計算。 |
4 |
1.小白板 2.白板筆 |
1.口頭回答 2.紙筆測驗 3.作業習寫 |
【性別平等教育】 【生涯發展教育】 |
一、了解自我與發展潛能 四、表達、溝通與分享 九、主動探索與研究 |
十五 |
12/4 - 12/10 |
數與量 |
七、分數的乘法 |
5-n-08 能理解分數乘法的意義,並熟練其計算,解決生活中的問題。 5-a-01 能在具體情境中,理解乘法對加法的分配律,並運用於簡化計算。 連結: C-R-1,C-R-2,C-R-3,C-S-4,C-S-5,C-C-2,C-C-3,C-C-5,C-C-7,C-C-8 |
1.了解分數乘法中,被乘數、乘數和積的變化關係。 2.能解決兩步驟的分數乘法問題。 |
【活動五】關係 1.教師口述情境布題,透過觀察和討論,察覺和解決被乘數、乘數與積的變化關係。 2.教師重新口述情境布題和圖表,透過觀察和討論,察覺和解決被乘數、乘數與積的變化關係。 【活動六】兩步驟的分數乘法問題 1.教師口述情境布題,透過觀察和討論,察覺和解決兩步驟(加乘、減乘、連乘)分數乘法問題。 |
4 |
1.小白板 2.白板筆 |
1.紙筆測驗 2.口頭回答 3.作業習寫 |
【性別平等教育】 【生涯發展教育】 |
一、了解自我與發展潛能 四、表達、溝通與分享 九、主動探索與研究 |
十六 |
12/11 - 12/17 |
數與量 |
八、時間的計算 |
5-n-15 能解決時間的乘除計算問題。 連結: C-S-2,C-S-3,C-S-4,C-T-1,C-T-2,C-C-1,C-C-2 |
1.能解決時間的乘法計算問題(分與秒、時與分、日與時)。 2.能解決時間的除法計算問題(分與秒、時與分、日與時)。 |
【活動一】時間的乘法問題 1.教師口述布題,透過觀察和討論,從連續聽同一首歌的情境引入,作分和秒的時間乘法計算。 2.教師重新口述布題,透過觀察和討論,作時和分、日和時的乘法計算。 【活動二】時間的除法問題 1.教師口述布題,透過觀察和討論,作分和秒的除法問題計算。 2.教師重新口述布題,透過觀察和討論,作時和分的除法問題計算。 3.教師重新口述布題,透過觀察和討論,作日和時的除法問題計算。 4.教師重新口述布題,透過觀察和討論,作除數為時間量的除法計算。 |
4 |
1.小白板 2.白板筆 |
1.紙筆測驗 2.互相討論 3.口頭回答 4.作業習寫 |
【性別平等教育】 【生涯發展教育】 |
一、了解自我與發展潛能 四、表達、溝通與分享 五、尊重、關懷與團隊合作 九、主動探索與研究 |
十七 |
12/18 - 12/24 |
數與量 |
八、時間的計算 |
5-n-15 能解決時間的乘除計算問題。 連結: C-S-2,C-S-3,C-S-4,C-T-1,C-T-2,C-C-1,C-C-2 |
1.能作時間的應用。 |
【活動三】時間的應用 1.教師口述布題,透過觀察和討論,作時間兩步驟應用問題計算。 2.教師口述布題,透過觀察和討論,作間隔和時間的除法問題計算。 |
4 |
1.小白板 2.白板筆 |
1.紙筆測驗 2.互相討論 3.口頭回答 4.作業習寫 |
【性別平等教育】 【生涯發展教育】 |
一、了解自我與發展潛能 四、表達、溝通與分享 五、尊重、關懷與團隊合作 九、主動探索與研究 |
十八 |
12/25 - 12/31 |
數與量 |
九、分數除以整數 |
5-n-09 能理解除數為整數的分數除法的意義,並解決生活中的問題。 連結: C-S-4,C-C-8,C-E-4 |
1.能理解除數為整數的分數除法意義及計算方法,並解決生活中的問題。 |
【活動一】真分數除以整數 1.教師口述布題,透過圖示引導,了解分數除以整數的意義,再用算式記錄問題和結果。 2.教師利用連續兩題的算式結果來提問,察覺「某數÷2」和「某數×1/2」所計算出的結果相同。 3.教師口述布題,透過先前經驗,討論和統整,解決真分數除以整數的問題。 【活動二】假分數除以整數 1.教師口述布題,透過先前經驗,討論和統整,解決假分數除以整數的問題。 【活動三】帶分數除以整數 1.教師口述布題,透過先前經驗,討論和統整,解決帶分數除以整數的問題。 【數學步道Ⅲ】分蛋糕 1.教師口述布題,透過畫圖,記錄結果。 2.教師重新布題,透過畫圖,了解分數除以整數的意義,再用算式記錄問題和結果。 3.教師延續前兩布題,讓學生進行分數的大小比較。 |
4 |
1.小白板 2.白板筆 |
1.紙筆測驗 2.互相討論 3.口頭回答 4.作業習寫 |
【生涯發展教育】 |
一、了解自我與發展潛能 四、表達、溝通與分享 五、尊重、關懷與團隊合作 九、主動探索與研究 |
十九 |
1/1 - 1/7 |
幾何 |
十、柱體、錐體和球 |
5-s-06 能認識球、直圓柱、直圓錐、直角柱與正角錐。 連結: C-R-1,C-R-2,C-R-4,C-T-1,C-S-3,C-S-4,C-C-1,C-C-2,C-E-4 |
1.認識角柱、角錐、圓柱和圓錐,及其構成要素。 |
【活動一】柱體和錐體的分類 1.教師口述情境布題,透過觀察、討論和操作,察覺並認識圓錐和圓柱、角柱和角錐。 【活動二】柱體和錐體的命名 1.教師口述情境布題,透過觀察、討論和操作,認識角柱和角錐的構成要素,並命名。 2.教師口述情境布題,學生透過觀察、討論和操作,認識圓柱和圓錐的組成要素,並命名。 |
4 |
1.附件15 2.膠帶 |
1.紙筆測驗 2.實測操作 3.口頭回答 4.分組報告 5.作業習寫 |
【性別平等教育】 【生涯發展教育】 |
一、了解自我與發展潛能 二、欣賞、表現與創新 四、表達、溝通與分享 五、尊重、關懷與團隊合作 九、主動探索與研究 |
廿 |
1/8 - 1/14 |
幾何 |
十、柱體、錐體和球 |
5-s-06 能認識球、直圓柱、直圓錐、直角柱與正角錐。 連結: C-R-1,C-R-2,C-R-4,C-T-1,C-S-3,C-S-4,C-C-1,C-C-2,C-E-4 |
1.認識柱體(直角柱、直圓柱)和錐體(正角錐、直圓錐)的透視圖。 2.認識柱體(直角柱、直圓柱)和錐體(正角錐、直圓錐)的展開圖。 |
【活動三】柱體和錐體的透視圖 1.教師口述情境布題,透過觀察、討論和操作具體物,察覺和認識柱體和錐體的視圖、透視圖。 【活動四】柱體和錐體的展開圖 1.教師口述情境布題,透過觀察、討論和操作具體物的分解和還原的過程,察覺認識柱體和錐體的展開圖。 2.教師口述情境布題,透過觀察、討論和操作附件,藉由展開圖還原成形體之過程,解決長方體中相對面的問題。 |
4 |
1.附件15∼21 2.膠帶 3.剪刀 |
1.紙筆測驗 2.實測操作 3.口頭回答 4.分組報告 5.作業習寫 |
【性別平等教育】 【生涯發展教育】 |
一、了解自我與發展潛能 二、欣賞、表現與創新 四、表達、溝通與分享 五、尊重、關懷與團隊合作 九、主動探索與研究 |
廿一 |
1/15 - 1/19 |
幾何 |
十、柱體、錐體和球 |
5-s-06 能認識球、直圓柱、直圓錐、直角柱與正角錐。 連結: C-R-1,C-R-2,C-R-4,C-T-1,C-S-3,C-S-4,C-C-1,C-C-2,C-E-4 |
1.認識角柱、角錐、圓柱和圓錐,及其構成要素。 2.認識球及其構成要素。 |
【活動五】角柱和角錐的構成要素及關係 1.教師口述情境布題,學生透過觀察、討論和操作,察覺並比較各種角柱的構成要素間的異同。 2.教師口述情境布題,透過觀察、討論和操作,察覺並比較各種角錐的構成要素間的異同。 【活動六】球 1.教師以課本情境布題,引導學生認識球。 2.教師口述布題,讓學生觀察柳丁切開後的面是什麼形狀。和學生共同討論應該怎麼切,切開的圓面積會最大。 2.教師揭示球體的剖面,引導學生認識球的各部位名稱。 3.教師以課本情境布題,學生實際旋轉圓形紙卡,觀察旋轉時所產生的形體,知道圓形的面旋轉時看起來像球體。 4.教師以動動腦部題,透過觀察討論,解決球直徑的應用問題。 |
4 |
1.附件15、22 |
1.紙筆測驗 2.實測操作 3.口頭回答 4.分組報告 5.作業習寫 |
【性別平等教育】 【生涯發展教育】 |
一、了解自我與發展潛能 二、欣賞、表現與創新 四、表達、溝通與分享 五、尊重、關懷與團隊合作 九、主動探索與研究 |